Abstract
We consider the free 2-nilpotent graded Lie algebra $$\mathfrak{g}$$ generated in degree one by a finite dimensional vector space V. We recall the beautiful result that the cohomology $$H^ \cdot \left( {\mathfrak{g},\mathbb{K}} \right)$$ of $$\mathfrak{g}$$ with trivial coefficients carries a GL(V)-representation having only the Schur modules V with self-dual Young diagrams {λ: λ = λ′} in its decomposition into GL(V)-irreducibles (each with multiplicity one). The homotopy transfer theorem due to Tornike Kadeishvili allows to equip the cohomology of the Lie algebra g with a structure of homotopy commutative algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.