Abstract
There are three conditions for a topological space to be said a topological manifold of dimension : Hausdorff space, second-countable, and the existence of homeomorphism of a neighborhood of each point to an open subset of or -dimensional locally Euclidean. The differentiable structure is given if the intersection of two charts is an empty chart or its transition map is differentiable. In this article, we study a differentiable manifold on finite dimensional real vector spaces. The aim is to prove that any finite-dimensional vector space is a differentiable manifold. First of all, it is proved that a finite dimensional vector space is a topological manifold by constructing a norm as its topology. Given a metric which is induced by a norm. Two norms on a finite dimensional vector space are always equivalent and they are determine the same topology. Secondly, it is proved that the transition map in the finite dimensional vector space is differentiable. As conclusion, we have that any finite dimensional vector space with independent norm topology choice is a differentiable manifold. As a matter of discussion, it can be studied that the vector space of all linear operators of a finite dimensional vector space has a differentiable manifold structure as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.