Paper-based packaging is a complex multi-material composed of paper (fibers), plastics, and metals, making efficient material recycling complicated. Currently, most of the fibers are recycled into new paper products while the residual material is commonly incinerated. Therefore, to improve the circularity and reduce the fossil dependency chemical recycling is needed. In this study, recycling of the residual materials was evaluated by thermal and catalytic pyrolysis. First, screening tests were performed using five reject materials and four catalysts in an analytical scale and then, a selection of catalyst and reject materials were evaluated in lab-scale followed by a techno-economic assessment. Experimental results indicated that the conversion was more efficient if the reject had high content of plastics compared to fibers, leading to products with increased heating value, higher hydrocarbon yield and less reactive oxygenates compared to the rejects with low plastic ratio. In the thermal pyrolysis 54 % of the weight of the feedstock and 70 wt% of the carbon in the feedstock ended up in a solid organic product (wax) which contained hydrocarbons and alcohols. In the analytical catalytic pyrolysis, HZSM-5 gave the best result in terms of cracking, deoxygenation, and aromatization. Ex-situ catalytic pyrolysis using HZSM-5 resulted in an improved quality of organic liquid with reduced hydrocarbon length as well as deoxygenated and aromatic compounds. The yield of the organic liquid was up to 19 wt% and contained mainly monoaromatics. The techno-economic evaluation showed, for processing 100,000 tons year−1 residual material, the total plant investment and the annual profit are about 29 and 12 million Euros, respectively, if no incentive for treating the residual material.
Read full abstract