Abstract

The pyrolysis process is a thermochemical conversion reaction that encompasses an intricate array of simultaneous and competitive reactions occurring in oxygen-depleted conditions. The final products of biomass pyrolysis are bio-oil, biochar, and some gases, with their proportions determined by the pyrolysis reaction conditions and technological pathways. Typically, low-temperature slow pyrolysis (reaction temperature below 500 °C) primarily yields biochar, while high-temperature fast pyrolysis (reaction temperature 700–1100 °C) mainly produces combustible gases. In the case of medium-temperature rapid pyrolysis (reaction temperature around 500–650 °C), conducted at very high heating rates and short vapor residence times (usually less than 1 s), the maximum liquid yield can reach up to 85 wt% (on a wet basis) or achieve 70 wt% (on a dry basis), with bio-oil being the predominant product. By employing the pyrolysis technique, valuable utilization of tobacco stem waste enriched with lignin can be achieved, resulting in the production of desired pyrolysis products such as transportation fuels, bio-oil, and ethanol. The present review focuses on catalytic pyrolysis, encompassing catalytic hydropyrolysis and catalytic co-pyrolysis, and meticulously compares the impact of catalyst structure on product distribution. Initially, we provide a comprehensive overview of the recent pyrolysis mechanism of lignin and tobacco waste. Subsequently, an in-depth analysis is presented, elucidating how to effectively design the catalyst structure to facilitate the efficient conversion of lignin through pyrolysis. Lastly, we delve into other innovative pyrolysis methods, including microwave-assisted and solar-assisted pyrolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call