Protein–protein interactions (PPIs) regulate many cellular processes and engineered PPIs have cell and gene therapy applications. Here, we introduce massively parallel PPI measurement by sequencing (MP3-seq), an easy-to-use and highly scalable yeast two-hybrid approach for measuring PPIs. In MP3-seq, DNA barcodes are associated with specific protein pairs and barcode enrichment can be read by sequencing to provide a direct measure of interaction strength. We show that MP3-seq is highly quantitative and scales to over 100,000 interactions. We apply MP3-seq to characterize interactions between families of rationally designed heterodimers and to investigate elements conferring specificity to coiled-coil interactions. Lastly, we predict coiled heterodimer structures using AlphaFold-Multimer (AF-M) and train linear models on physics-based energy terms to predict MP3-seq values. We find that AF-M-based models could be valuable for prescreening interactions but experimentally measuring interactions remains necessary to rank their strengths quantitatively.