With the increase in the non-linearity and complexity of the driving system’s environment, developing and optimizing related applications is becoming more crucial and remains an open challenge for researchers and automotive companies alike. Model predictive control (MPC) is a well-known classic control strategy used to solve online optimization problems. MPC is computationally expensive and resource-consuming. Recently, machine learning has become an effective alternative to classical control systems. This paper provides a developed deep neural network (DNN)-based control strategy for automated steering deployed on FPGA. The DNN model was designed and trained based on the behavior of the traditional MPC controller. The performance of the DNN model is evaluated compared to the performance of the designed MPC which already proved its merit in automated driving task. A new automatic intellectual property generator based on the Xilinx system generator (XSG) has been developed, not only to perform the deployment but also to optimize it. The performance was evaluated based on the ability of the controllers to drive the lateral deviation and yaw angle of the vehicle to be as close as possible to zero. The DNN model was implemented on FPGA using two different data types, fixed-point and floating-point, in order to evaluate the efficiency in the terms of performance and resource consumption. The obtained results show that the suggested DNN model provided a satisfactory performance and successfully imitated the behavior of the traditional MPC with a very small root mean square error (RMSE = 0.011228 rad). Additionally, the results show that the deployments using fixed-point data greatly reduced resource consumption compared to the floating-point data type while maintaining satisfactory performance and meeting the safety conditions