The present paper reports that in vitro plant objects (test tube plants and cell cultures), when subjected to furostanol glycosides (FG), underwent nonspecific reactions related to antioxidant status—decrease in peroxidation of lipids (POL) and increase in guaiacol-dependent peroxidase activity. The level of superoxide increased as early as after 5 min from contact with yam (Dioscorea deltoidea Wall) cells with FG. In this case, changes in POL processes and in activities of peroxidase and aldehyde-disposing emzymes were also observed. Upon a short-term cell exposure to FG, the levels of the primary POL products (conjugated dienes) increased, and that of the secondary POL products decreased compared to the control. These events were preceded by a rise in SOD activity and in an antioxidant activity of peroxidase along with a concurrent decrease in its oxidase (prooxidant) activity. The elevated activities of aldehyde-disposing enzymes aldehyde dehydrogenase and aldehyde reductase favored the reduction in the content of the secondary products of POL. Upon a long contact of FG with cells, the effect of FG was seen only at the initial and final phases of the culture growth cycle. Namely, FG diminished the POL level at the exponential growth phase and at the end of the cell degradation phase but had no effect at the stationary phase and the onset of the degradation phase. Therefore, the treatment with FG retarded the cell culture degradation and made the fall in cell viability not so dramatic by the end of the growth cycle. Actually, by the end of the degradation phase, the viability diminished down to 40% in the control but remained at 70% in the FG-treated counterpart.