The particle segregation mode of two different inclusion phases of Y2BaCuO5 (Y211: a dissolving phase in a Ba–Cu–O liquid phase) and BaCeO3 (a nondissolving phase) was investigated in the melt-textured YBa2Cu3O7−y (Y123) with BaCeO3 addition (0–20 wt. %), and with 30 wt.% Y211 plus BaCeO3 (0–20 wt. %). The segregation mode of the inclusion phases is dependent not only on the type of the inclusion phases but also their amounts. When the trapped amount of the Y211 is small, they make an X-like pattern on the diagonal planes of the Y123 crystal. When the amount of the Y211 is large, meanwhile, the Y211 particles are trapped within four tetrahedral spaces (normal to the c-axis) bounded by the diagonal planes of the Y123 crystal, with no Y211 trapping within two tetrahedral spaces parallel. On the other hand, the nondissolving BaCeO3 particles make linear tracks normal to the {100} growth fronts of the Y123 crystal.