We report the isolation of a full length coding WNK3 cDNA from human fetal brain. The WNK3 transcript has an open reading frame of 5403 nucleotides and encodes a putative protein of 1800 amino acids. The human WNK3 gene comprises 24 exons and lies within a 559 kb genomic segment on chromosome Xp11.22 which has conserved synteny with a 705 kb genomic segment of human chromosome 9q22.31 which contains WNK2. The WNK3 transcript is expressed in several human fetal and adult tissues and has at least two splice isoforms generated by the alternative splicing of exon 18 and exon 22 which maintain the open reading frame. Usage of exon 18b is restricted to brain and introduces an additional 47 amino acids into the predicted protein. The predicted WNK3 protein has a similar structural organization to the other human WNK kinases. Significant homology between these proteins is confined to three conserved regions of their amino acid sequences which we have designated CR1, CR2 and CR3. CR1 and CR3 contain highly conserved residues which have been shown to be important for the normal function of WNK1 and WNK4, and CR2 contains a highly conserved 22 amino acid motif specific to chordate species. WNK3 lies within the critical linkage interval for several human monogenic disorders, including X-linked mental retardation. The function of mammalian WNK3 kinase remains to be investigated.