Abstract

Multinodular goitre (MNG) is a common disorder characterised by an enlargement of the thyroid, occurring as a compensatory response to hormonogenesis impairment. The incidence of MNG is dependent on sex (female:male ratio 5:1) and several reports have documented a genetic basis for the disease. Last year we mapped a MNG locus to chromosome Xp22 in a region containing the peroxiredoxin IV (Prx-IV) gene. Since Prx-IV is involved in the removal of H2O2 in thyroid cells, we hypothesize that mutations in Prx-IV gene are involved in pathogenesis of MNG. Four individuals (2 affected, 2 unrelated unaffected) were sequenced using automated methods. All individuals were originated from the original three-generation Italian family described in previous studies. A Southern blot analysis using a Prx-IV full-length cDNA as a probe was performed in order to exclude genomic rearrangements and/or intronic mutations. In addition a RT-PCR of PRX-IV was performed in order to investigate expression alterations. No causative mutations were found. Two adjacent nucleotide substitutions were detected within introns 1 and 4. These changes were also detected in unaffected individuals, suggesting that they were innocuous polymorphisms. No gross genomic rearrangements and/or restriction fragment alterations were observed on Southern analysis. Finally, using RT-PCR from tissue-specific RNA, no differences of PRX-IV expression-levels were detected between affected and unaffected samples. Based on sequence and genomic analysis, Prx-IV is very unlikely to be the MNG2 gene.

Highlights

  • Multinodular goitre (MNG) is a common disorder characterised by an enlargement of the thyroid, occurring as a compensatory response to hormonogenesis impairment

  • Regulation of H2O2 concentration is critical for the thyroxine synthesis, since hydrogen peroxide is needed for the conversion of iodide to organically bound iodine

  • Since PRX-I e PRX-II are involved in the removal of H2O2 in thyroid cells, we have hypothesised that peroxiredoxin IV (Prx-IV) mutations may affect intracellular H2O2 levels and impair thyroxine hormonogenesis

Read more

Summary

Introduction

Multinodular goitre (MNG) is a common disorder characterised by an enlargement of the thyroid, occurring as a compensatory response to hormonogenesis impairment. Even if MNG incidence is influenced by iodine intake, family clustering of the disease has been reported in iodo-sufficient areas, suggesting a genetic basis for the disease [2]. This was confirmed by the identification of three dominant MNG loci: MNG1 on chromosome 14q [3], MNG2 on chromosome Xp22 [4] and MNG3 on chromosome 3q26 [5]. Since PRX-I e PRX-II are involved in the removal of H2O2 in thyroid cells, we have hypothesised that Prx-IV mutations may affect intracellular H2O2 levels and impair thyroxine hormonogenesis. We have screened Prx-IV as a MNG2 positional candidate

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.