With the rapid development of hydrogen pipelines, their safety issues have become increasingly prominent. In order to evaluate the properties of pipeline materials under a high-pressure hydrogen environment, this study investigates the hydrogen embrittlement sensitivity of X70 welded pipe in a 10 MPa high-pressure hydrogen environment, using slow strain rate testing (SSRT) and low-cycle fatigue (LCF) analysis. The microstructure, slow tensile and fatigue fracture morphology of base metal (BM) and weld metal (WM) were characterized and analyzed by means of ultra-depth microscope, scanning electron microscope (SEM), electron backscattering diffraction (EBSD), and transmission electron microscope (TEM). Results indicate that while the high-pressure hydrogen environment has minimal impact on ultimate tensile strength (UTS) for both BM and WM, it significantly decreases reduction of area (RA) and elongation (EL), with RA reduction in WM exceeding that in BM. Under the nitrogen environment, the slow tensile fracture of X70 pipeline steel BM and WM is a typical ductile fracture, while under the high-pressure hydrogen environment, the unevenness of the slow tensile fracture increased, and a large number of microcracks appeared on the fracture surface and edges, with the fracture mode changing to ductile fracture + quasi-cleavage fracture. In addition, the high-pressure hydrogen environment reduces the fatigue life of the BM and WM of X70 pipeline steel, and the fatigue life of the WM decreases more than that of the BM as well. Compared to the nitrogen environment, the fatigue fracture specimens of BM and WM in the hydrogen environment showed quasi-cleavage fracture patterns, and the fracture area in the instantaneous fracture zone (IFZ) was significantly reduced. Compared with the BM of X70 pipeline steel, although the effective grain size of the WM is smaller, WM's microstructure, with larger Martensite/austenite (M/A) constituents and MnS and Al-rich oxides, contributes to a heightened embrittlement sensitivity. In contrast, the second-phase precipitation of nanosized Nb, V, and Ti composite carbon-nitride in the BM acts as an effective irreversible hydrogen trap, which can significantly reduce the hydrogen embrittlement sensitivity.
Read full abstract