Secondary investigations into digital health records, including electronic patient data from German medical data integration centers (DICs), pave the way for enhanced future patient care. However, only limited information is captured regarding the integrity, traceability, and quality of the (sensitive) data elements. This lack of detail diminishes trust in the validity of the collected data. From a technical standpoint, adhering to the widely accepted FAIR (Findability, Accessibility, Interoperability, and Reusability) principles for data stewardship necessitates enriching data with provenance-related metadata. Provenance offers insights into the readiness for the reuse of a data element and serves as a supplier of data governance. The primary goal of this study is to augment the reusability of clinical routine data within a medical DIC for secondary utilization in clinical research. Our aim is to establish provenance traces that underpin the status of data integrity, reliability, and consequently, trust in electronic health records, thereby enhancing the accountability of the medical DIC. We present the implementation of a proof-of-concept provenance library integrating international standards as an initial step. We adhered to a customized road map for a provenance framework, and examined the data integration steps across the ETL (extract, transform, and load) phases. Following a maturity model, we derived requirements for a provenance library. Using this research approach, we formulated a provenance model with associated metadata and implemented a proof-of-concept provenance class. Furthermore, we seamlessly incorporated the internationally recognized Word Wide Web Consortium (W3C) provenance standard, aligned the resultant provenance records with the interoperable health care standard Fast Healthcare Interoperability Resources, and presented them in various representation formats. Ultimately, we conducted a thorough assessment of provenance trace measurements. This study marks the inaugural implementation of integrated provenance traces at the data element level within a German medical DIC. We devised and executed a practical method that synergizes the robustness of quality- and health standard-guided (meta)data management practices. Our measurements indicate commendable pipeline execution times, attaining notable levels of accuracy and reliability in processing clinical routine data, thereby ensuring accountability in the medical DIC. These findings should inspire the development of additional tools aimed at providing evidence-based and reliable electronic health record services for secondary use. The research method outlined for the proof-of-concept provenance class has been crafted to promote effective and reliable core data management practices. It aims to enhance biomedical data by imbuing it with meaningful provenance, thereby bolstering the benefits for both research and society. Additionally, it facilitates the streamlined reuse of biomedical data. As a result, the system mitigates risks, as data analysis without knowledge of the origin and quality of all data elements is rendered futile. While the approach was initially developed for the medical DIC use case, these principles can be universally applied throughout the scientific domain.