Wood recognition is a crucial task for wood sciences and industries, since it leads to the identification of the anatomical features and physical properties of wood. Traditionally, the recognition process relies almost exclusively on human experts, who are based on various characteristics of wood, such as color, structure and texture. However, there are numerous types of wood species in the nature that are difficult to be identified even by experienced scientists. Towards this end, in this paper we propose a novel approach for automated wood species recognition through multidimensional texture analysis. By taking advantage of the fact that static wood images contain periodic spatially-evolving characteristics, we introduce a new spatial descriptor considering each wood image as a collection of multidimensional signals. More specifically, the proposed methodology enables the representation of wood images as concatenated histograms of higher order linear dynamical systems produced by vertical and horizontal image patches. The final classification of images, i.e., histogram representations, into wood species, is performed using a Support Vector Machines (SVM) classifier. For the evaluation of the proposed method, a dataset, namely “WOOD-AUTH”, consisting of more than 4200 wood images (from cross, radial and tangential sections of normal wood structure) of twelve common wood species existing in Greek territory, was created. Experimental results presented in this paper show the great potential of the proposed methodology, which, despite a small number of misclassification cases with regards to both anatomically similar and different species, outperforms a number of state of the art approaches, yielding a classification rate of 91.47% in wood cross sections.