Abstract

Although wood cross sections contain spatiotemporal information regarding tree growth, computer vision-based wood identification studies have traditionally favored disordered image representations that do not take such information into account. This paper describes image partitioning strategies that preserve the spatial information of wood cross-sectional images. Three partitioning strategies are designed, namely grid partitioning based on spatial pyramid matching and its variants, radial and tangential partitioning, and their recognition performance is evaluated for the Fagaceae micrograph dataset. The grid and radial partitioning strategies achieve better recognition performance than the bag-of-features model that constitutes their underlying framework. Radial partitioning, which is a strategy for preserving spatial information from pith to bark, further improves the performance, especially for radial-porous species. The Pearson correlation and autocorrelation coefficients produced from radially partitioned sub-images have the potential to be used as auxiliaries in the construction of multi-feature datasets. The contribution of image partitioning strategies is found to be limited to species recognition and is unremarkable at the genus level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.