A mechanistic understanding of phenology, the seasonal timing of life history events, is important for understanding species’ interactions and the potential responses of ecological communities to a rapidly changing climate. We present analysis of a seven-year dataset on the breeding phenology of wood frogs (Rana sylvatica), tiger salamanders (Ambystoma tigrinum), blue-spotted salamanders (Ambystoma laterale), and associated unisexual Ambystoma salamanders from six wetlands in Southeast Michigan, USA. We assess whether the ordinal date of breeding migrations varies among species, sexes, and individual wetlands, and we describe the specific environmental conditions associated with breeding migrations for each species/sex. Breeding date was significantly affected by species/sex identity, year, wetland, and the interactions between species/sex and year as well as wetland and year. There was a great deal of variation among years, with breeding occurring nearly synchronously among groups in some years but widely spaced between groups in other years. Specific environmental triggers for movement varied for each species and sex and changed as the breeding season progressed. In general, salamanders responded to longer temperature lags (more warmer days in a row) than wood frogs, whereas wood frogs required longer precipitation lags (more rainy days in a row) than salamanders. Wood frogs were more likely to migrate around the time of a new moon, whereas in contrast, Ambystoma salamander migration was not associated with a moon phase. Ordinal day was an important factor in all models, suggesting that these amphibians require a latency period or similar mechanism to avoid breeding too early in the year, even when weather conditions appear favorable. Male wood frogs migrated earlier than female wood frogs, and male blue-spotted salamanders migrated earlier than female A. laterale and associated unisexual females. Larger unisexual salamanders migrated earlier than smaller individuals. Differences in species’ responses to environmental cues led to wood frogs and A. laterale breeding later than tiger salamanders in colder years but not in warmer years. This suggests that, as the climate warms, wood frog and A. laterale larvae may experience less predation from tiger salamander larvae due to reduced size differences when they breed simultaneously. Our study is one of few to describe the proximate drivers of amphibian breeding migrations across multiple species, wetlands, and years, and it can inform models predicting how climate change may shift ecological interactions among pond-breeding amphibian species.