Abstract

The wood frog (Rana sylvatica) undergoes physiological and metabolic changes to withstand subzero temperatures and whole body freezing during the winter months. Along with metabolic rate depression, high concentrations of glucose are produced as a cryoprotectant by liver and distributed to all other tissues. Pyruvate kinase (PK; EC:2.7.1.40), the final enzyme of glycolysis, plays an important role in the modulation of glucose metabolism and, therefore, overall metabolic regulation. The present study investigated the functional and kinetic properties of purified PK from liver of control (5°C acclimated) and frozen (-2.5°C for 24h) wood frogs. Liver PK was purified to homogeneity by a two-step chromatographic process, followed by analysis of enzyme properties. A significant decrease in the affinity of PK for its substrates, phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP) at 22°C and 5°C was noted in liver from frozen frogs, as compared with controls. Immunoblotting also revealed freeze-responsive changes in posttranslational modifications with a significant increase in serine and threonine phosphorylation by 1.46-fold and 1.73- fold for PK from frozen frogs as compared with controls. Furthermore, a test of thermal stability showed that PK from liver of frozen wood frogs showed greater stability as compared with PK from control animals. Taken together, these results suggest that PK is negatively regulated, and glycolysis is suppressed, during freezing. This response acts as an important survival strategy for maintaining continuously elevated levels of cryoprotectant in frogs while they remain in a hypometabolic frozen state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call