The growing demand for sustainable building materials, amid escalating costs, has spurred interest in alternative solutions such as wood cement composites. This study explores the feasibility of producing wood cement boards (WCBs) using locally sourced cedar sawdust as a reinforcing agent. Boards with a thickness of 10 mm and a target density of 1200 kg/m3 were manufactured under pressures ranging from 2 to 6 MPa for 24 h. Cedar sawdust, used as raw and untreated material, was incorporated into the mixture as a partial substitute for cement in varying proportions, ranging from 10% to 25% (by weight). The WCBs were cured for 28 days under ambient conditions. Physical properties including density, water absorption (WA), and thickness swelling (TS) were assessed, along with mechanical properties through flexural tests. The results showed that increasing cedar sawdust content decreased both density and mechanical performance while increasing WA and TS. Microstructural analysis (SEM and EDS) revealed significant porosity at higher sawdust contents, while lower contents had better matrix-reinforcement cohesion. Additionally, substantial levels of calcium and silicon were detected on the sawdust surface, indicating stabilized cement hydration products. These findings, supported by thermal (TGA and DSC) and FTIR analyses, clearly demonstrate that cement boards with 10% cedar sawdust exhibit favorable properties for non-structural applications, such as wall and partition cladding.