The enriched thermal mechanisms and progressive of nanomaterial has enthused scientists to give devotion to this area in current days. The versatile and synthesizing utilization of such particles embrace energy production, solar systems, heating and cooling monitoring processes, renewable energy systems, cancer treatments, hybrid-powered motors and Nano electronics. Furthermore, in this era of biotechnology and bioengineering, the bio convection of Nano fluids provides for some enthralling applications, such as enzymes, biosensors and biofuels. With such magnetic applications and attentions. A mathematical model is presented for evaluating the electrical conducting Williamson nano fluid with heat and mass transfer over a porous stretched sheet in the existence of bioconvection. The bioconvection of swimming microorganisms, thermal radiation,thermal conductivity and Arrhenius energy are new facets of this investigation. The higher order non-linear governing partial differential equations (PDEs) are solved by applying appropriate similarity variables and resulting couple of ordinary differential equations (ODEs) is produced. The developing set of ODEs is solved numerically by utilizing well known shooting technique with ND solve command in Wolfram MATHEMATICA and compare the result with pvb4c code in MATLAB. The graphs for different physical quantities of interest together with non-dimension velocity, temperature, concentration and density of micro-organisms profiles are discovered for involving parameters like .magnetic parameter, Brownian motion, Rayleigh number, Peclet number, Bioconvective Lewis number, parameter of thermophoresis and buoyancy ratio parameter. The influence of numerous parameters on flow and heat transfer characteristics are debated.
Read full abstract