We quantify the contamination from polarized diffuse Galactic synchrotron and thermal dust emissions to the B-modes of the CMB anisotropies on the degree angular scale, using data from the Planck and WMAP satellites. We compute power spectra of foreground polarized emissions in 352 circular sky patches located at Galactic latitude |b|>20{\deg}, each of which covering a fraction of the sky of about 1.5%. We make use of the spectral properties derived from Planck and WMAP data to extrapolate, in frequency, the amplitude of synchrotron and thermal dust B-modes spectra in the multipole bin centered at $\ell\simeq80$. In this way we estimate, for each analyzed region, the amplitude and frequency of the foreground minimum. We detect both dust and synchrotron signal, at degree angular scale and at 3 confidence level, in 28 regions. Here the minimum of the foreground emission is found at frequencies between 60 and 100 GHz with an amplitude,expressed in terms of the equivalent tensor-to-scalar ratio, r_FG, between ~0.06 and ~1. Some of these regions are located at high Galactic latitudes, in areas close to the ones which are being observed by sub-orbital experiments.In all the other sky patches, where synchrotron or dust B-modes are not detectable with the required confidence, we put upper limits on the minimum foreground contamination and find values of r_FG between ~0.05 and ~1.5, in the frequency range 60-90 GHz. Our results indicate that, with the current sensitivity at low frequency, it is not possible to exclude the presence of synchrotron contamination to CMB cosmological B-modes at the level requested to measure a gravitational waves signal with r~0.01, at frequency <100 GHz, anywhere. Therefore, more accurate data are essential in order to better characterize the synchrotron polarized component, and eventually, remove its contamination to CMB signal through foreground cleaning.