Abstract

Full-sky maps of the cosmic microwave background temperature reveal a 7% asymmetry of fluctuation power between two halves of the sky. A common phenomenological model for this asymmetry is an overall dipole modulation of statistically isotropic fluctuations, which produces particular off-diagonal correlations between multipole coefficients. We compute these correlations and construct corresponding estimators for the amplitude and direction of the dipole modulation. Applying these estimators to various cut-sky temperature maps from Planck and WMAP data shows consistency with a dipole modulation, differing from a null signal at 2.5$\sigma$, with an amplitude and direction consistent with previous fits based on the temperature fluctuation power. The signal is scale dependent, with a statistically significant amplitude at angular scales larger than 2 degrees. Future measurements of microwave background polarization and gravitational lensing can increase the significance of the signal. If the signal is not a statistical fluke in an isotropic Universe, it requires new physics beyond the standard model of cosmology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.