A detailed kinetic model has been developed that describes the selective hydro-desulfurization chemistry of FCC naphtha at minimal olefin saturation. The FCC naphtha is represented by 348 molecular lumps measured by different gas-chromatographic methods. The reaction chemistry is specified in terms of reaction rules using the structure-oriented lumping (SOL) framework. A total of 15 reaction rules, which describe 444 individual reaction steps, have been used to model the governing chemistry. Relative reactivity relationships among different molecular lumps within the same rule have been derived using model feeds or established results from the literature. The kinetic parameters have been estimated from a comprehensive experimental data set comprising of both pilot plant and commercial refinery data spanning a wide range of process conditions and feed compositions. The kinetic model quantitatively predicts the product composition, product properties, extent of hydro-desulfurization, olefin saturation, and the associated octane loss. The modeling framework is generic to naphtha hydroprocessing technologies, and its specific application to the Selective CAtalytic Naphtha hydrofining (SCANfining) process, a proprietary technology of ExxonMobil, is demonstrated.
Read full abstract