AbstractThe COVID‐19 pandemic resulted in a widespread lockdown during the spring of 2020. Measurements collected on a light rail system in the Salt Lake Valley (SLV), combined with observations from the Utah Urban Carbon Dioxide Network observed a notable decrease in urban CO2 concentrations during the spring of 2020 relative to previous years. These decreases coincided with a ∼30% reduction in average traffic volume. CO2 measurements across the SLV were used within a Bayesian inverse model to spatially allocate anthropogenic emission reductions for the first COVID‐19 lockdown. The inverse model was first used to constrain anthropogenic emissions for the previous year (2019) to provide the best possible estimate of emissions for 2020, before accounting for emission reductions observed during the COVID‐19 lockdown. The posterior emissions for 2019 were then used as the prior emission estimate for the 2020 COVID‐19 lockdown analysis. Results from the inverse analysis suggest that the SLV observed a 20% decrease in afternoon CO2 emissions from March to April 2020 (−90.5 tC hr−1). The largest reductions in CO2 emissions were centered over the northern part of the valley (downtown Salt Lake City), near major roadways, and potentially at industrial point sources. These results demonstrate that CO2 monitoring networks can track reductions in CO2 emissions even in medium‐sized cities like Salt Lake City.
Read full abstract