In this paper, a two dimensional/two dimensional (2D/2D) heterostructure of Ti3C2/g-C3N4 (T/CN) was constructed and used to activate peroxymonosulfate (PMS) for the degradation of diclofenac (DCF) in water in the presence of light illumination. Compared with single photocatalytic process by T/CN (0.040/min) and with pure g-C3N4 nanosheets in PMS system (0.071/min), 5.0 and 3.0 times enhanced activities were achieved in the T/CN-PMS system at optimum Ti3C2 (1.0 wt%) loading under light illumination (0.21/min). Moreover, the decomposing processes of DCF in T/CN-PMS system were applicable in a wide initial pH range (3∼14), therefore, overcoming the limitation of pH dependence in traditional PMS system. Based on the synergistic effect of photocatalysis and PMS oxidation processes, the 1O2 was generated as primary reactive species for the removal of DCF in T/CN-PMS system. The DCF degradation mechanism was further proposed through the results of liquid chromatography-mass spectrometry (LC-MS) and density functional theory (DFT) calculations.
Read full abstract