Abstract

Persulfate (PS) activation by nano zerovalent iron (nZVI) is promising for water purification, which is restricted due to its easy agglomeration and oxidation. Herein, porous hydrochar loaded nZVI (nZVI@PHC) was successfully synthesized by one-step process. nZVI@PHC not only had excellent adsorption capacity (178.6 mg/g) and abundant functional groups, but also possessed highly dispersed nZVI for PS activation to produce reactive oxygen species. Impressively, 0.2 g/L of nZVI@PHC (PHC/nZVI = 5:3) and 0.4 g/L of PS could achieve 99.7 % of phenol removal within 10 min. Moreover, nZVI@PHC/PS system showed superior applicability among wide range of initial pH (3.0–9.0) and temperatures (25–55 °C). Phenol removal mechanisms were elaborated by dissolved iron ions, scavenging experiments, and electronic paramagnetic spectrometer. As a result, both non-free radical pathway mediated by O21 and free radical pathway (SO4•−, HO•, and O2•−) participated in phenol degradation. Additionally, nZVI@PHC/PS system had favorable reusability and high tolerance to co-existing substance and different water bodies. This study provides a promising strategy to tailor highly active nZVI for PS activation to organic contaminants degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.