As an important transcription and pluripotency factor, Sox2 plays its functions essentially in the regulation of self-renewal and pluripotency of embryonic and neural stem cells, as well as embryogenesis, organogenesis, neurogenesis and regeneration. The data is lacking on Sox2 in large yellow croaker (Larimichthys crocea) (Lc-Sox2) which is a limitation on the generation of induced pluripotent stem cells (iPSCs). In this study, Lc-sox2 was cloned by RACE (rapid amplification of cDNA ends) and analyzed by Bioinformatics. The quantitative real-time PCR (qRT-PCR) and whole mount in situ hybridization (WISH) were used to detect the expression of Lc-sox2. The full-length cDNA sequence of Lc-sox2 is 2135 bp and encodes a 322-aa (amino acids). Lc-Sox2 possesses a highly conserved HMG-box as DNA-binding domain, maintains highly conserved with vertebrates, particularly with teleosts. In tissues, Lc-sox2 was expressed with gender difference in brain and eye (female > male), in embryos, Lc-sox2 was expressed with a zygotic type that the high level expression began to appear in the gastrula stage. The spatio-temporal expression patterns of Lc-sox2 suggested the potential involvement in embryogenesis, neurogenesis, gametogenesis and adult physiological processes of large yellow croaker. Our results contributed to better understanding of Sox2 from large yellow croaker.
Read full abstract