7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.gep.2017.08.002
Copy DOIJournal: Gene Expression Patterns | Publication Date: Aug 18, 2017 |
Citations: 7 |
It has been well established that many types of rapidly dividing normal and diseased cells require an increased amount of folate for DNA replication and repair as well as cellular metabolism. Thus one of folate's cognate receptors, Folate Receptor 1 (FOLR1) is usually up-regulated in rapidly dividing cells, including many types of cancerous tumors. Because zebrafish have become a model organism for understanding conserved vertebrate cellular pathways and human disease, there has been an increased need to identify and elucidate orthologous zebrafish genes that are central to known human maladies. The cells of all early animal embryos go through a phase of rapid division (cleavage) where particular cell cycle checkpoints are skipped until a specification event occurs directing these embryonic stem cells to their fated germ layer cell type. Interestingly, this rapid cell division that ignores cell cycle checkpoints is also observed in many cancers. Developing blastula and tumor cells both require folr1 expression to obtain folate. In this report we have identified the expression pattern of the zebrafish gene zgc:165502, located on chromosome 15. Using computational and comparative methods and molecular biology techniques such as reverse transcription polymerase chain reaction (RT-PCR) and whole mount in situ hybridization (WISH) during embryogenesis, we demonstrate that zgc:165502 is the zebrafish orthologue of the human FOLR1 gene. Understanding when and where FOLR1 orthologues are expressed in different biomedical model organisms such as the zebrafish will help researchers design better experiments to study the endogenous FOLR1 activity.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.