The neurohypophyseal hormones vasopressin and oxytocin are produced and released within the mammalian brain, where they act via multiple receptor subtypes. The neural distributions of these receptors, for example, V1a and oxytocin receptors, have been well described in many mammals. In birds, the distribution of binding sites for the homologous neuropeptides, vasotocin (VT) and mesotocin, has been studied in several species by using synthetic radioligands designed to bind to mammalian receptors. Such binding studies, however, may not reveal the specific distributions of each receptor subtype. To identify and map the receptors likely to bind VT and mesotocin, we generated partial cDNA sequences for four VT receptor subtypes, VT1, VT2 (V1b), VT3 (oxytocin-like), and VT4 (V1a), in white-throated sparrow (Zonotrichia albicollis) and zebra finch (Taeniopygia guttata). These genes shared high sequence identity with the homologous avian and mammalian neurohypophyseal peptide receptors, and we found evidence for VT1, VT3, and VT4 receptor mRNA expression throughout the brains of both species. As has been described in rodents, there was striking interspecific and intraspecific variation in the densities and distribution of these receptors. For example, whereas the VT1 receptor mRNA was more widespread in zebra finch brain, the VT3 (oxytocin-like) receptor mRNA was more prevalent in the sparrow brain. Although VT2 (V1b) receptor mRNA was abundant in the pituitary, it was not found in the brain. Because of their association with brain regions implicated in social behavior, the VT1, VT3, and VT4 receptors are all likely candidates for mediating the behavioral effects of VT.