In this work, we have described the synthesis of vanadium (V) nanoparticles (NPs) anchored on mesoporous graphitic carbon nitride (V@mpg-C3N4) and their uses in photocatalytic ethylbenzene oxidation to the respective acetophenones. The mpg-C3N4 serves as the support for the decoration of V NPs, through a simple impregnation method. Various advanced techniques, such as XRD, UV–vis spectrometry, HRTEM, HAADF-STEM, AC-STEM, elemental mapping, and BET surface area analysis, were employed for the characterization of V@mpg-C3N4. The detailed characterization studies reveal that the V@mpg-C3N4 catalyst has a medium band gap (2.78 eV), a high surface area (76.7 m2g−1), and a mesoporous nature. The V@mpg-C3N4 photocatalysts demonstrated excellent performance in the light-assisted oxidation of ethylbenzene, achieving over 99 % conversion and selectivity for acetophenone in an environmentally friendly solvent (water) using a domestic light source (50 W white light). This developed synthesis strategy will be useful for synthesizing various noble and non-noble metal-based catalysts and their applications in organic transformation and environmental remediation.
Read full abstract