Microarray analyses of transcriptomes have been used to characterize mesenchymal stem cells (MSCs) of various origins. MicroRNAs (miRNAs) are short, nonprotein-coding RNAs involved in post-transcriptional gene inhibition in a variety of tissues, including cancer cells and MSCs. This study has integrated the use of miRNA and mRNA expression profiles to analyze human MSCs derived from Wharton's jelly (WJ) of the umbilical cord, milk teeth (MT), and adult wisdom teeth (AT). Because both miRNA and mRNA expression in MT and AT MSCs were so similar, they were combined together as tooth MSCs for comparison with WJ MSCs. Twenty-five genes that were up-regulated in tooth MSCs and 41 genes that were up-regulated in WJ MSCs were identified by cross-correlating miRNA and mRNA profiles. Functional network analysis show that tooth MSCs signature genes, represented by SATB2 and TNFRSF11B, are involved in ossification, bone development, and actin cytoskeleton organization. In addition, 2 upregulated genes of tooth MSCs-NEDD4 and EMP1-have been shown to be involved in neuroectodermal differentiation. The signature genes of WJ MSCs, represented by KAL1 and PAPPA, are involved in tissue development, regulation of cell differentiation, and bone morphogenetic protein signaling pathways. In conclusion, the combined interrogation of miRNA and mRNA expression profiles in this study proved useful in extracting reliable results from a genome-wide comparison of multiple types of MSCs. Subsequent functional network analysis provided further functional insights about these MSCs.
Read full abstract