Alternaria brown spot affects many tangerines and their hybrids, causing lesions on leaves, twigs, and fruit resulting in reduced yield and fruit quality. Field studies were conducted in a severely affected Minneola tangelo grove in central Florida from 1996 to 1998 to determine the environmental factors associated with infection of field trees and potted trap plants. Conidial production peaked following large flushes of new leaves, which were heavily infected. Most infections occurred during the summer rainy season, but trap plants became infected nearly every week of the year. When plants were exposed for 1-week periods, linear regression analysis indicated that disease severity on trap plants was positively related to the amount of rainfall, duration of leaf wetness, and average daily temperatures, and negatively related to the number of conidia trapped. Similar relationships occurred with trap plants exposed for 24-h periods on 141 different dates, except that temperature was not a significant factor. Nevertheless, these factors individually or combined in stepwise multiple regressions explained only a low percentage of the variability in disease severity with both weekly and daily trap plant sampling. When daily environmental data were categorized as: (i) rain versus no rain, (ii) <10 h or >10 h leaf wetness duration, and (iii) average temperature <20°C, 20 to 28°C, and >28°C, relationships to disease severity on trap plants were clearer. Disease severity on days with rain was nearly double that of days without rain, but considerable infection occurred on days with >10 h leaf wetness duration and no rain. Infection was greatest on days with temperatures of 20 to 28°C and slightly less at lower or higher temperatures. A point system, called the ALTER-RATER, was designed whereby each day would be assigned a severity value according to the prevailing environmental conditions. A fungicide application would be made after a predetermined number of points had accumulated. Simulated spray programs based on accumulation of 50, 75, 100, and 150 points from historical weather data at several locations indicated that from 8 to 15, 6 to 8, 5 to 6, or 3 to 4 sprays, respectively, would be needed depending on year and location in Florida. Such a weather-based control system could reduce the number of fungicide applications and improve control of Alternaria brown spot of tangerine.