A novel sanitizer tablet containing clove essential oil (CO) microemulsion was developed. A preformulation study using nuclear magnetic resonance and thermal analyses showed component compatibility. The main components of the samples remained intact despite a color change, probably due to a strong acid-base interaction between eugenol and diethanolamine. The CO microemulsion showed acaricidal and larvicidal activities superior to the commercial product, with product efficacy of 99.9% and larvae mortality of 94%. Optimal spray-drying conditions were achieved with inlet and outlet temperatures of 50°C and 40°C, respectively, an aspiration rate of 1 m3 min⁻1, and a 0.25 L h⁻1 injection flow. The feed suspension comprised 50% (v/v) liquid soap, 37.5% (v/v) water, 12.5% (v/v) ethanol, and 5.0% (w/v) silica. This formulation and processing parameters allowed for successful free-flow powder formation, providing a suitable matrix for incorporating the CO microemulsion via wet granulation without heating. Finally, sanitizer tablets produced from such granules resulted in a uniform product with low weight variation (coefficient of variation of 0.15%), eugenol content of 95.5% ± 3.3, and friability of 0.58%. Furthermore, the tablets showed rapid aqueous dispersion, forming a colloidal system with particle sizes of 221 nm and a zeta potential of -17.2 mV. Antimicrobial activity tests demonstrated the effectiveness of the sanitizer tablet against bacteria and fungi, exhibiting comparable antimicrobial potency to isolated CO. Hence, the sanitizer tablet developed represents a promising candidate as a practical and efficient solution for pest control, offering strong antimicrobial and acaricidal activity.
Read full abstract