Background Ixora species are perennial shrubs and flowering plants belonging to the family Rubiaceae. The leaf and flower parts of Ixora coccinea (I. coccinea)andIxora alba (I. alba) were aimed at isolating their active fractions. The present study was to determine in vitro antitumor activity against malignant melanoma cell lines for phytosome formulation. Materials and methods Two species, I. coccinea (red flowers and leaves) and I. alba (white flowers and leaves), were selected, and this study focused on determining the active fraction by comparing the in vitro antimicrobial and antioxidant potentials of petroleum ether, chloroform, ethyl acetate, and hydroalcoholic (ethanol:water, 70:30 v/v) extracts. The identified potent extract was subjected to in vitro anticancer activity in malignant melanoma cell lines. Results A phytochemical study revealed phytosterols, flavonoids, proteins, amino acids, alkaloids, carbohydrates, phenols, tannins, and diterpenes. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to evaluate the antioxidant effect of I. coccinea and I. alba leaf and flower extracts. In the DPPH assay, I. coccinea flower hydroalcoholic extract (ICFHA) had an IC50 value of 248.99 µg/mL, and I. coccinea leaf hydroalcoholic extract (ICLHA) had an IC50 value of 268.87 µg/mL. These two extracts had a lower value with a higher antioxidant effect. In the total antioxidant assay, I. coccinea leaf ethyl acetate extract (ICLEA) and I. coccinea leaf chloroform extract (ICLCE) have 77.4 ± 0.05 and 68.9 ± 0.03 mg of ascorbic acid equivalent per gm of extract, respectively. These two extracts exhibited a high antioxidant effect. The antimicrobial potential was evaluated using selected bacterial and fungal strains using the agar-well diffusion method. Petroleum ether and chloroform extracts of I. coccinea and I. alba leaves and flowers did not possess antimicrobial activity with any of the bacterial or fungal strains. An ethyl acetate extract and a hydroalcoholic extract of I. coccinea leaves and flowers showed antimicrobial activity against Enterococcus faecalis, Candida albicans, and Staphylococcus aureus. An ethyl acetate extract of I. coccinea flower and a hydroalcoholic extract of I. alba leaf showed a significant zone of inhibition when compared with standard chloramphenicol for all three selected strains, which may be due to the presence of active phytoconstituents. ICLHA showed a MIC of ≤300 µg/mL for Enterococcus faecalisandStaphylococcus aureusand ≤400 µg/mL for Candida albicans microbial strains. The high total flavonoid content was reported in ICLEA at 771.31 µg/mL and in I. coccinea flower ethyl acetate extract (ICFEA) at 694.69 µg/mL. High-performance thin layer chromatography (HPTLC) analysis showed a high quercetin (QCE) content in the ICLEA extract. To prove the in vitro skin anticancer activity, an MTT assay was performed for the ICLEA extract in a malignant melanoma cell line, and the IC50 value was reported as 7.96 µg/mL. Conclusion I. coccinea leaf ethyl acetate extract revealed a significant total flavonoid content in analysis through the aluminum chloride method, and the presence of a high QCE content was confirmed by HPTLC analysis. The in vitro skin anticancer activity of ICLEA was confirmed by the MTT assay; therefore, it was concluded that the ICLEA extract was a potent fraction and was selected to develop a phytosome.
Read full abstract