For j = 1, 2,…, n + 1, let ( X j , ∑ j , μ j ) be σ-finite measure spaces and let P ( X j ) denote the class of nonnegative measurable functions on X j . Given a positive multilinear operator M: P (X 1) × P (X 2) × … × P (X n) → P (X n+1), and fixed indices p 1, p 2,…, p n , q ϵ [1, ∞], we consider the problem of determining those nonnegative (weight) functions w 1, w 2,…, w n and v on X 1, X 2,…, X n and X n + 1 , respectively, for which ∫ X n+1 [M(f 1, f 2 …, f n) v] q dμ n+1 1 q ⩽C ∏ j=1 n ∫ X j (f jw j) p dμ j 1 p j , with C > 0 independent of f jϵ P (X j), j=1,2, …, n.
Read full abstract