Pre-plant soil fumigation is widely applied to control nematodes, soil-borne fungal pathogens, and weeds in vegetable crops. However, most of the research evaluating the effect of fumigants on crop yield and soil microbial communities has been done on single compounds despite growers mainly applying fumigant combinations. We studied the effect of different fumigant combinations (chloropicrin, 1,3-dichloropropene, and metam potassium) on soil properties, crop yield, and the soil bacterial and fungal microbiome for two consecutive years in a plastic-mulched tomato production system in Florida (United States). While combinations of fumigants did not improve plant productivity more than the individual application of these products, application of fumigants with >60 % chloropicrin did significantly increase yield. Fumigant combinations had no significant effect on bacterial diversity, but fumigants with >35 % chloropicrin reduced soil fungal diversity and induced temporary changes in the soil bacterial and fungal community composition. These changes included short-term increases in the relative abundance of Firmicutes and Ascomycota, as well as decreases in other bacterial and fungal taxa. Repeated fumigation reduced network complexity and the relative abundance of several predicted bacterial functions and fungal guilds, particularly after fumigation and at end of harvest (3-months post fumigation). A structural equation model (SEM) showed fumigants not only directly impact crop yield, but they can also indirectly determine variations in plant productivity through effects on the soil microbiome. Overall, this study increases our understanding of the environmental and agricultural impacts of fumigants in a plastic-mulched tomato production system.
Read full abstract