Energy harvesting from ambient sources present in the environment is essential to replace traditional energy sources. These strategies can diversify the energy sources, reduce maintenance, lower costs, and provide near-perpetual operation of the devices. In this work, a triboelectric nanogenerator (TENG) based on silane-coupled Linde type A/polydimethylsiloxane (LTA/PDMS) is developed for harsh environmental conditions. The silane-coupled LTA/PDMS-based TENG can produce a high output power density of 42.6 µW/cm2 at a load resistance of 10 MΩ and operates at an open-circuit voltage of 120 V and a short-circuit current of 15 µA under a damping frequency of 14 Hz. Furthermore, the device shows ultra-robust and stable cyclic repeatability for more than 30 k cycles. The fabricated TENG is used for the physiological monitoring and charging of commercial capacitors to drive low-power electronic devices. Hence, these results suggest that the silane-coupled LTA/PDMS approach can be used to fabricate ultra-robust TENGs for harsh environmental conditions and also provides an effective path toward wearable self-powered microelectronic devices.
Read full abstract