Abstract
The bonding between glass and other materials plays a crucial role when glass is used in industrial products. In this study, we propose a new approach to enhance the bonding strength of glass with other materials by fabricating nanoscale porous structures on glass surfaces via a chemical reaction with hydrogen fluoride gas. Herein, we present a methodology for controlling the thickness of the porous structure, clarify the relationship between the thickness and adhesion strength, investigate the shape of the formed porous structure, and propose a method to control its shape. Our findings reveal that the fabricated porous structure greatly improves the adhesion strength of the adhesive owing to the microscopic anchoring effect induced by the penetration of the adhesive into the porous structure. This approach is expected to be applied to architectural and automobile window glasses, solar panels, sensor cover glasses of autonomous vehicles, display devices (including smartphones), and wearable devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.