Single-asperity wear experiments and simulations have identified different regimes of wear including Eyring- and Archard-like behaviors. A multibond dynamics model has been developed based on the friction model of Filippov et al. [Phys. Rev. Lett. 92, 135503 (2004)]. This new model captures both qualitatively distinct regimes of single-asperity wear under a unified theoretical framework. In this model, the interfacial bond formation, wearless rupture, and transfer of atoms are governed by three competing thermally activated processes. The Eyring regime holds under the conditions of low load and low adhesive forces; few bonds form between the asperity and the surface, and wear is a rare and rate-dependent event. As the normal stress increases, the Eyring behavior of wear rate breaks down. A nearly rate-independent regime arises under high load or high adhesive forces, in which wear becomes very nearly, but not precisely, proportional to sliding distance. In this restricted regime, the dependence of wear rate per unit contact area is nearly independent of the normal stress at the point of contact. In true contact between rough elastic surfaces, where contact area is expected to grow linearly with normal load, this would lead to behavior very similar to that described by the Archard equation. Detailed comparisons to experimental and molecular dynamics simulation investigations illustrate both Eyring and Archard regimes, and an intermediate crossover regime between the two.