Abstract

The tribocorrosion behaviour of biomaterial Ti-25Nb-3Mo-3Zr-2Sn alloy in Ringer's solution was evaluated by micro-abrasion experiments, electrochemical tests and scanning electron microscope (SEM) observations. Potentiodynamic polarization results suggested that the effect of particle concentration on the electrochemistry characteristic is greater than the applied load. When the particle concentration and applied load were 0.05g·cm−3 and 0.25N, respectively, the Ecorr reached the maximum as −0.381V. The micro-abrasion-corrosion results showed that the wear rates of the Ti-25Nb-3Mo-3Zr-2Sn alloy increased with increasing particle concentration and decreased as applied load increased. The wear rates acquired under various conditions regarding to the main wear mechanism of two-body grooving wear with less three-body rolling wear; three-body abrasive wear modes are more efficient at material loss than two-body wear. The variation in material loss indicated that the contribution of corrosion is lower than the contribution of micro-abrasion. The wear regime, wastage and micro-abrasion-corrosion synergy maps associated with the particle concentration and applied load were established to evaluate the tribocorrosion behaviour of the Ti-25Nb-3Mo-3Zr-2Sn alloy as a potential surgical implant material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.