The thio-barbituric acid is convenient starting compound for the preparation of fused heterocycles and its 5-substituted derivatives which are pharmacologically one of the most important classes of compounds. The fused compounds of thio-barbituric acid, 4-(1R,2S,3S,4S)-1,2,3,4,5-tetrahydroxy pentyl-10-phenyl-1,3,6,8,9,10 hexahydro-2,7-dithiooxopyrido [2,3-d; 6,5'] dipyrimidine-4,5 diones (1), 4-(1S,2S,3S,4S)-1,2,3,4,5-tetrahydroxy pentyl-10-phenyl-1,3,6,8,9,10 hexahydro-2,7-dithiooxopyrido [2,3-d; 6,5'] dipyrimidine-4,5 diones (2), 3-(1R,2S,3S)-1,2,3,4-tetrahydroxy butyl-10-phenyl-1,3,6,8,9,10 hexahydro-2,7-dithiooxopyrido [2,3-d; 6,5'] dipyrimidine-4,5 diones (3) have been synthesized in single step by the condensation of thio-barbituric acid with sugars (l-rhamnose, l-fucose and l-arabinose) & aniline using para-toluene sulfonic acid (p-TSA) as an effective acid catalyst under refluxing conditions. The molecular structure and detailed spectroscopic analysis of all three novel synthesized thiones derivatives have been performed using experimental techniques like 1H, 13C NMR, 2D (COSY, HSQC, DEPT-135 and DEPT-90) as well as theoretical calculations by density functional theory (DFT) using B3LYP and 6-311G + (d, p) basis set. The strength and nature of weak intramolecular interactions have been studied by atom in molecule (AIM) approach. Global reactivity descriptors have been computed to predict reactivity and reactive sites in the molecule.
Read full abstract