LLCL filters for grid-tied inverters have been adopted to get better performance for the harmonics near the switching frequency than commonly used LCL filters. However, the resonant peak caused by a pair of unstable resonance poles of the LLCL filters is introduced and makes the system become unstable. In this paper, a biquad filter composed of a notch filter and a resonator is introduced to restrain the resonant peak. In this method, the resonance point and the notch point of the biquad filter are placed at the appointed frequency, and the resonant peak is transferred to the stable area by phase transformation, so that the system does not cross −180° at the resonant peak. This method makes the system have higher control bandwidth and stronger robustness even in a weak power grid. Meanwhile, a proportional-integral multiresonant repetitive controller is used to restrain low-frequency current harmonics and improve the steady-state and dynamic performance of the control system. Furthermore, based on the active damping of the biquad filter, the stability criterion of the control system under a weak power grid is given. Finally, the accuracy of the analysis and the effectiveness of the method is verified by simulations.
Read full abstract