This paper investigates charged particle deflection in a Kerr spacetime background with a dipole magnetic field, focusing on the equatorial plane and employing the weak field approximation. We employ the Jacobi–Randers metric to unify the treatment of the gravitational and electromagnetic effects on charged particles. Furthermore, we utilize the Gauss–Bonnet theorem to calculate the deflection angle through curvature integrals. The difference between the prograde and retrograde deflection angles is linked to the non-reversibility of metrics and geodesics in Finsler geometry, revealing that this difference can be considered a Finslerian effect. We analyze the impact of both gravitomagnetic field and dipole magnetic field on particle motion and deflection using the Jacobi–Randers magnetic field. The model considered in this paper exhibits interesting features in the second-order approximation of (M/b), i.e., the ratio between the spacetime mass and impact parameters. When qμ=2MaE\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$q\\mu =2MaE$$\\end{document}, where q,E\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$q,\\,E$$\\end{document} are the charge and asymptotic energy of the charged particle and μ,a\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu ,\\,a$$\\end{document} are the dipole magnetic moment and spacetime spin, the Jacobi–Randers metric possesses reversible geodesics, leading to equal prograde and retrograde deflection angles. In this case, the gravitomagnetic field and dipole magnetic field cancel each other out, distinguishing it from scenarios involving only the gravitomagnetic field or the dipole magnetic field. We also explore the magnetic field’s impact on gravitational lensing of charged particles.