Abstract
Abstract The Event Horizon Telescope (EHT) imaging of the supermassive black holes at the centers of Messier 87 galaxy (M87) and the Milky Way galaxy (Sgr A) marks a significant step in observing the photon rings and central brightness depression that define the optical appearance of black holes with an accretion disk scenario. Inspired by this, we take into account a static and spherically symmetric magnetically charged regular black hole (MCRBH) metric characterized by its mass and an additional parameter q, which arises from the coupling of Einstein gravity and nonlinear electrodynamics (NLED) in the weak field approximation. This parameterized model offers a robust foundation for testing the coupling of Einstein gravity and NLED in the weak-field approximation, using the EHT observational results. In this study, we investigate the geodesic motion of particles around the solution, followed by a discussion of its fundamental geometrical characteristics such as scalar invariants. Using null geodesics, we examine how the model parameter influences the behavior of the photon sphere radius and the associated shadow silhouette. We seek constraints on q by applying the EHT results for supermassive black holes M87* and Sgr A*. Furthermore, it is observed that the geodesics of time-like particles are susceptible to variations in q, which can have an impact on the traits of the innermost stable circular orbit and the marginally bounded orbit. Our primary objective is to probe how the free parameter q affects various aspects of the accretion disk surrounding the MCRBH using the thin-disk approximation. Next, we discuss the physical characteristics of the thin accretion disk as well as the observed shadows and rings of the MCRBH, along with its luminosity, across various accretion models. Ultimately, variations in accretion models and the parameter q yield distinct shadow images and optical appearances of the MCRBH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.