Abstract

The work reviews the investigation of electromagnetic, optical, and energetic properties of astrophysical and galactic black holes and surrounding matter. The astrophysical applications of the theoretical models of black hole environment to the description of various observed phenomena, such as cosmic rays of the ultra-high-energy, black hole shadow, gravitational lensing, quasinormal modes, jets showing relativistic effects such as the Doppler beaming, thermal radiation from the accretion discs, quasiperiodic oscillations are discussed. It has been demonstrated that the observational data strongly depends on the structure and evolution of the accretion disk surrounding the central black hole. It has been shown that the simulated images of supermassive black holes obtained are in agreement with the observational images obtained by event horizon telescope collaboration. High energetic activity from supermassive black holes due to the magnetic Penrose process discussed in the work is in agreement with the highly energetic cosmic rays observed. The astronomical observation of black holes provides rich fundamental physics laboratories for experimental tests and verification of various models of black hole accretion and different theories of gravity in the regime of strong gravity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call