Alkali-surfactant-polymer (ASP) flooding is one of the most effective and promising ways to enhance oil recovery (EOR). The synergistic effect between alkali, surfactant, and polymer can respectively promote emulsification performance, reduce interfacial tension, and improve bulk phase viscosity, thus effectively improving flooding efficiency. However, the displacement mechanism of ASP flooding and the contribution of different components to the oil displacement effect still need further discussion. In this study, five groups of chemical slugs were injected into the fracture model after water flooding to characterize the displacement effect of weak alkali, surfactant, polymer, and their binary/ternary combinations on residual oil. Additionally, the dominant mechanism of the ASP flooding system to improve the recovery was studied. The results showed that EOR can be improved through interfacial reaction, low oil/water interfacial tension (IFT), and increased viscosity. In particular, the synergistic effect of ASP includes sweep and oil washing. As for sweep, the swept volume is expanded by the interfacial reaction between the alkali and the acidic components in Daqing crude oil, and the polymer increases the viscosity of the system. As for oil washing, the surfactant generated by the alkali cooperates with surfactants to reduce the IFT to an ultra-low level, which promotes the formation and migration of oil-in-water emulsions and increases the efficiency of oil washing. Overall, ASP can not only activate discontinuous oil ganglia in the pores within the water flooding range, but also emulsify, decompose, and migrate the continuous residual oil in the expanded range outside the water flooding. The EOR of ASP is 38.0% higher than that of water flooding. Therefore, the ASP system is a new ternary composite flooding technology with low cost, technical feasibility, and broad application prospects.