Wearable thermoelectric generators as renewable energy conversion technologies have witnessed rapid development in the past decade. Herein, we design a nanowire (NW) film wavy structure which possesses an excellent temperature gradient ratio for stretchable thermoelectric generators. Taking advantage of the photothermal effect of Te NWs as the hot side and p-n NWs heterofilms (n-type Ag2Te and p-type Cu1.75Te NWs) as thermoelectric materials, a considerable output voltage can be achieved under light irradiation. Besides the electricity output, the wearable device can also make our skin warm and comfortable in cold weather. Meanwhile, we combine thermoelectric generators with passive radiative cooling technology to reduce insolation of the human body and improve the performance of the device under intense solar irradiation in hot weather. Interestingly, it can also offer continuous green energy to realize various signal perceptions, suggesting a robust strategy for electricity output and self-powered wearable electronics.
Read full abstract