Fault diagnosis for wind turbine transmission systems is an important task for reducing their maintenance cost. However, the non-stationary dynamic operating conditions of wind turbines pose a challenge to fault diagnosis for wind turbine transmission systems. In this paper, a novel fault diagnosis method based on manifold learning and Shannon wavelet support vector machine is proposed for wind turbine transmission systems. Firstly, mixed-domain features are extracted to construct a high-dimensional feature set characterizing the properties of non-stationary vibration signals from wind turbine transmission systems. Moreover, an effective manifold learning algorithm with non-linear dimensionality reduction capability, orthogonal neighborhood preserving embedding (ONPE), is applied to compress the high-dimensional feature set into low-dimensional eigenvectors. Finally, the low-dimensional eigenvectors are inputted into a Shannon wavelet support vector machine (SWSVM) to recognize faults. The performance of the proposed method was proved by successful fault diagnosis application in a wind turbine's gearbox. The application results indicated that the proposed method improved the accuracy of fault diagnosis.
Read full abstract