Abstract
A novel intelligent diagnosis model based on wavelet support vector machine (WSVM) and immune genetic algorithm (IGA) for gearbox fault diagnosis is proposed. Wavelet support vector machine is a powerful novel tool for solving the diagnosis problem with small sampling, nonlinearity and high dimension. Immune genetic algorithm is developed in this study to determine the optimal parameters for WSVM with the highest accuracy and generalization ability. Moreover, the feature vectors for fault diagnosis are obtained from vibration signal that preprocessed by empirical mode decomposition (EMD). The experimental results indicate that this proposed approach is an effective method for gearbox fault diagnosis, which has more strong generalization ability and can achieve higher diagnostic accuracy than that of the artificial neural network and the SVM which has randomly extracted parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.