Artificial lighting, primarily employed in crop production, can also be applied to the cultivation of edible mushrooms to enhance productivity and quality. While UV radiation has predominantly been investigated in post-harvest treatments for edible mushrooms, the utilization of different light wavelengths during the cultivation phase remains largely unexplored for many mushroom species. This study aimed to assess the impact of three different light wavelengths 450 nm (B), 610 nm (R), and a combination of these two wavelengths (R + B) on the productive characteristics and quality of Pleurotus ostreatus, cultivated using three straw-based commercial substrates. It was observed that, except for yield, artificial light influenced mushroom growth. Specifically, the application of R light appeared to promote mycelium growth, whereas B light contributed to increase the diameter of fruiting bodies. Additionally, the concentration of vitamin D2 was higher under both B and R+B light treatments. Interestingly, the light treatments did not affect yield but impacted diameter and various chemical attributes such as EC, total soluble solids, and titratable acidity. In conclusion, exposure to different lighting affected Pleurotus ostreatus physiology and nutritional content.