In order to meet the time service needs of high-precision, long-distance, and multinode optical network, this paper proposes a new time synchronization solution, which combines the wavelength division multiplexing (WDM) technology with cascaded taming clock technology. The WDM technology is used for time synchronization between each pair of master-slave nodes. In the system, there are two wavelengths on the fiber link between the master node and the slave node for transmitting signals. 1 plus per second (PPS) signal, time code signal, and 10 MHz signal are, respectively, and successively, sent to the optical fiber link. By solving the one-way delay through analysis of error contribution and link characteristics of the time transmission process, time synchronization of the master-slave nodes pair is achieved. Furthermore, the authors adopt cascaded taming clock technology to ensure accurate time synchronization of each node. A 700 km long-distance time-frequency synchronization system is constructed in the laboratory. The system uses a cesium atomic clock as the reference clock source and transmits the signals through 8 small rubidium atomic clocks (RB clocks) hierarchically. Results from the experiment show that the long-term time stability is 47.5 ps/104 s. The system’s structural characteristics and the experiment results meet the requirements to allow practical use of high-precision time synchronization in networks. This proposed solution can be applied in various civil, commercial, and military fields.
Read full abstract