We study the possibility that primordial black holes (PBHs) can be formed from large curvature perturbations generated during the waterfall phase transition due to the effects of one-loop radiative corrections of Yukawa couplings between the inflaton and a dark fermion in a non-supersymmetric hybrid inflationary model. We obtain a spectral index ns\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n_s$$\\end{document}, and a tensor-to-scalar ratio r, consistent with the current Planck data. Our findings show that the abundance of PBHs is correlated to the dark fermion mass mN\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m_N$$\\end{document} and peak in the GW spectrum. We identify parameter space where PBHs can be the entire dark matter (DM) candidate of the universe or a fraction of it. Our predictions are consistent with any existing constraints of PBH from microlensing, BBN, CMB, etc. Moreover, the scenario is also testable via induced gravitational waves (GWs) from first-order scalar perturbations detectable in future observatories such as LISA and ET. For instance, with inflaton mass m∼2×1012\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m \\sim 2\ imes 10^{12}$$\\end{document} GeV, mN∼5.4×1015\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m_N \\sim 5.4\ imes 10^{15}$$\\end{document} GeV, we obtain PBHs of around 10-13M⊙\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$10^{-13}\\, M_\\odot $$\\end{document} mass that can explain the entire abundance of DM and predict GWs with amplitude ΩGWh2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega _\ extrm{GW}h^2$$\\end{document}∼10-9\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sim 10^{-9}$$\\end{document} with peak frequency f∼\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sim $$\\end{document} 0.1 Hz in LISA. By explicitly estimating fine-tuning we show that the model has very mild tuning. We discuss successful reheating at the end of the inflationary phase via the conversion of the waterfall field into standard model (SM) particles. We also briefly speculate a scenario where the dark fermion can be a possible heavy right-handed neutrino (RHN) which is responsible for generating the SM neutrino masses via the seesaw mechanism. The RHN can be produced due to waterfall field decay and its subsequent decay may also explain the observed baryon asymmetry in the universe via leptogenesis. We find the reheat temperature TR≲5×109\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T_R\\lesssim 5\ imes 10^9$$\\end{document} GeV that explains the matter-anti-matter asymmetry of the universe.